Short-Interfering-RNA-Mediated Gene Silencing in Mammalian Cells Requires Dicer and eIF2C Translation Initiation Factors

نویسندگان

  • Noboru Doi
  • Shuhei Zenno
  • Ryu Ueda
  • Hiroko Ohki-Hamazaki
  • Kumiko Ui-Tei
  • Kaoru Saigo
چکیده

RNA interference (RNAi) is the process of long, double-stranded (ds), RNA-dependent posttranscriptional gene silencing (PTGS). In lower eukaryotes, dsRNA introduced into the cytoplasm is cleaved by the RNaseIII-like enzyme, Dicer, to 21-23 nt RNA (short interfering [si] RNA), which may serve as guide for target mRNA degradation. In mammals, long-dsRNA-dependent PTGS is applicable only to a limited number of cell types, whereas siRNA synthesized in vitro is capable of effectively inducing gene silencing in a wide variety of cells. Although biochemical and genetic analyses in lower eukaryotes showed that Dicer and some PIWI family member proteins are essential for long-dsRNA-dependent PTGS, little is known about the molecular mechanisms underlying siRNA-based PTGS. Here, we show that Dicer and eIF2C translation initiation factors belonging to the PIWI family (eIF2C1-4) play an essential role in mammalian siRNA-mediated PTGS, most probably through synergistic interactions. Immunoprecipitation experiments suggest that, in human and mouse cells, complex formation occurs between Dicer and eIF2C1 or 2 and that the PIWI domain of eIF2C is essential for the formation of this complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA.

Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and...

متن کامل

MicroRNAs: Loquacious Speaks out

In Drosophila, Dicer-2 requires the double-stranded RNA binding protein R2D2, to mediate the assembly of short interfering RNAs into the RNA-induced silencing complex. New data show that Dicer-1 also requires a double-stranded RNA binding protein called Loquacious for efficient microRNA-mediated gene silencing.

متن کامل

A virus-encoded inhibitor that blocks RNA interference in mammalian cells.

Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003